Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Lab Chip ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38576341

RESUMO

Developing a tumor model with vessels has been a challenge in microfluidics. This difficulty is because cancer cells can overgrow in a co-culture system. The up-regulation of anti-angiogenic factors during the initial tumor development can hinder neovascularization. The standard method is to develop a quiescent vessel network before loading a tumor construct in an adjacent chamber, which simulates the interaction between a tumor and its surrounding vessels. Here, we present a new method that allows a vessel network and a tumor to develop simultaneously in two linked chambers. The physiological environment of these two chambers is controlled by a microfluidic resistive circuit using two symmetric long microchannels. Applying the resistive circuit, a diffusion-dominated environment with a small 2-D pressure gradient is created across the two chambers with velocity <10.9 nm s-1 and Péclet number <6.3 × 10-5. This 2-D pressure gradient creates a V-shaped velocity clamp to confine the tumor-associated angiogenic factors at pores between the two chambers, and it has two functions. At the early stage, vasculogenesis is stimulated to grow a vessel network in the vessel chamber with minimal influence from the tumor that is still developed in the adjacent chamber. At the post-tumor-development stage, the induced steep concentration gradient at pores mimics vessel-tumor interactions to stimulate angiogenesis to grow vessels toward the tumor. Applying this method, we demonstrate that vasculogenic vessels can grow first, followed by stimulating angiogenesis. Angiogenic vessels can grow into stroma tissue up to 1.3 mm long, and vessels can also grow into or wrap around a 625 µm tumor spheroid or a tumor tissue developed from a cell suspension. In summary, our study suggests that the interactions between a developing vasculature and a growing tumor must be controlled differently throughout the tissue development process, including at the early stage when vessels are still forming and at the later stage when the tumor needs to interact with the vessels.

2.
J Neuroinflammation ; 20(1): 279, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007487

RESUMO

BACKGROUND: Vision loss in patients with wet/exudative age-related macular degeneration (AMD) is associated with choroidal neovascularization (CNV), and AMD is the leading cause of irreversible vision impairment in older adults. Interleukin-17A (IL-17A) is a component of the microenvironment associated with some autoimmune diseases. Previous studies have indicated that wet AMD patients have elevated serum IL-17A levels. However, the effect of IL-17A on AMD progression needs to be better understood. We aimed to investigate the role of IL-17A in a laser-induced CNV mouse model. METHODS: We established a laser-induced CNV mouse model in wild-type (WT) and IL-17A-deficient mice and then evaluated the disease severity of these mice by using fluorescence angiography. We performed enzyme-linked immunosorbent assay (ELISA) and fluorescence-activated cell sorting (FACS) to analyze the levels of IL-17A and to investigate the immune cell populations in the eyes of WT and IL-17A-deficient mice. We used ARPE-19 cells to clarify the effect of IL-17A under oxidative stress. RESULTS: In the laser-induced CNV model, the CNV lesions were larger in IL-17A-deficient mice than in WT mice. The numbers of γδ T cells, CD3+CD4+RORγt+ T cells, Treg cells, and neutrophils were decreased and the number of macrophages was increased in the eyes of IL-17A-deficient mice compared with WT mice. In WT mice, IL-17A-producing γδ T-cell numbers increased in a time-dependent manner from day 7 to 28 after laser injury. IL-6 levels increased and IL-10, IL-24, IL-17F, and GM-CSF levels decreased in the eyes of IL-17A-deficient mice after laser injury. In vitro, IL-17A inhibited apoptosis and induced the expression of the antioxidant protein HO-1 in ARPE-19 cells under oxidative stress conditions. IL-17A facilitated the repair of oxidative stress-induced barrier dysfunction in ARPE-19 cells. CONCLUSIONS: Our findings provide new insight into the protective effect of IL-17A in a laser-induced CNV model and reveal a novel regulatory role of IL-17A-producing γδ T cells in the ocular microenvironment in wet AMD.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Idoso , Animais , Humanos , Camundongos , Neovascularização de Coroide/metabolismo , Modelos Animais de Doenças , Olho/metabolismo , Interleucina-17/metabolismo , Lasers , Degeneração Macular/etiologia , Degeneração Macular/metabolismo , Camundongos Endogâmicos C57BL
3.
Eur Spine J ; 32(10): 3413-3424, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563485

RESUMO

PURPOSE: To elucidate whether pro-inflammatory cytokines might influence the commitment of intervertebral disc (IVD)- and ligamentum flavum (LF)-derived progenitor cells toward either osteogenesis or adipogenesis, specifically Interleukin-1ß (IL-1ß), IL-19, and IL-20. METHODS: Sixty patients with degenerative spondylolisthesis and lumbar or lumbosacral spinal stenosis were included in the study. Injuries to the spine, infections, and benign or malignant tumors were excluded. From nine patient samples, IVD- and LF-derived cells were isolated after primary culture, and two clinical samples were excluded due to mycoplasma infection. The effects of IL-1ß, IL-19, as well as IL-20 in regulating osteogenic and adipogenic differentiation in vitro were investigated. RESULTS: Primary IVD- and LF-derived cells were found to have a similar cell morphology and profile of surface markers (CD44, CD90, and CD105) as placenta-derived mesenchymal stem cells (MSCs). Primary IVD/LF cells have a high capacity to differentiate into osteocytes and adipocytes. IL-19 had a tendency to promote adipogenesis. IL-20 inhibited osteogenesis and promoted adipogenesis; IL-1ß promoted osteogenesis but inhibited adipogenesis. CONCLUSION: IL-1ß, IL-19, and IL-20 impact the adipogenic and osteogenic differentiation of IVD-derived and LF-derived cells. Modulating the expression of IL-1ß, IL-19, and IL-20 provides a potential avenue for controlling cell differentiation of IVD- and LF-derived cells, which might have beneficial effect for degenerative spondylolisthesis and spinal stenosis.


Assuntos
Ligamento Amarelo , Estenose Espinal , Espondilolistese , Humanos , Adipogenia , Osteogênese , Interleucina-1beta/farmacologia , Estenose Espinal/patologia , Ligamento Amarelo/patologia , Espondilolistese/patologia , Diferenciação Celular , Células-Tronco
4.
Cells ; 11(24)2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36552805

RESUMO

Obesity and its associated complications are global public health concerns. Metabolic disturbances and immune dysregulation cause adipose tissue stress and dysfunction in obese individuals. Immune cell accumulation in the adipose microenvironment is the main cause of insulin resistance and metabolic dysfunction. Infiltrated immune cells, adipocytes, and stromal cells are all involved in the production of proinflammatory cytokines and chemokines in adipose tissues and affect systemic homeostasis. Interferons (IFNs) are a large family of pleiotropic cytokines that play a pivotal role in host antiviral defenses. IFNs are critical immune modulators in response to pathogens, dead cells, and several inflammation-mediated diseases. Several studies have indicated that IFNs are involved in the pathogenesis of obesity. In this review, we discuss the roles of IFN family cytokines in the development of obesity-induced inflammation and insulin resistance.


Assuntos
Citocinas , Resistência à Insulina , Humanos , Citocinas/metabolismo , Resistência à Insulina/fisiologia , Interferons , Obesidade/metabolismo , Inflamação/metabolismo
5.
Cell Mol Life Sci ; 79(7): 347, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670856

RESUMO

Structural changes known as airway remodeling characterize chronic/severe asthma and contribute to lung dysfunction. We previously reported that neonatal SSEA-1+ pulmonary stem/progenitor cells (PSCs) ameliorated airway inflammation in asthmatic mice. However, the molecular mechanisms by which endogenous SSEA-1+ PSC of adult mice afford beneficial effects in alveolar homeostasis and lung repair after allergen challenge remain incompletely understood. To analyze the expression profile and clarify the biological significance of endogenous adult lung SSEA-1+ cells in asthmatic mice. Lung SSEA-1+ cells and circulating SSEA-1+ cells in peripheral blood were determined by confocal microscopy and cytometric analysis. GFP chimeric mice were used to trace cell lineage in vivo. The roles of circulating SSEA-1+ cells were verified in ovalbumin-induced and house dust mite-induced allergic asthmatic models. In asthmatic mice, endogenous lung SSEA-1+ cells almost disappeared; however, a unique population of circulating SSEA-1+ cells was enriched after the challenge phase. In asthmatic mice, adoptive transfer of circulating SSEA-1+ cells had a specific homing preference for the lung in response to inhaled antigen through upregulating CXCR7-CXCL11 chemokine axis. Circulating SSEA-1+ cells can transdifferentiate in the alveolar space and ameliorate lung inflammation and structural damage through inhibiting the infiltration of inflammatory cells into peribronchovascular and goblet cell hyperplasia areas, reducing the thickened smooth muscle layers and PAS-positive mucus-containing goblet cells. Reinforcing bone marrow-derived circulating SSEA-1+ cells from peripheral blood into lung tissue which create a rescue mechanism in maintaining alveolar homeostasis and tissue repair to mediate lung protection for emergency responses after allergen challenge in asthmatic conditions.


Assuntos
Asma , Antígenos CD15 , Remodelação das Vias Aéreas , Alérgenos/metabolismo , Alérgenos/farmacologia , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Inflamação/metabolismo , Antígenos CD15/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Células-Tronco/metabolismo
6.
J Biomed Sci ; 29(1): 36, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681232

RESUMO

BACKGROUND: Dry eye disease (DED) is a common disease in ophthalmology, affecting millions of people worldwide. Recent studies have shown that inflammation is the core mechanism of DED. IL-20 is a proinflammatory cytokine involved in various inflammatory diseases. Therefore, we aimed to explore the role of this cytokine in the pathogenesis of DED and evaluate the therapeutic potential of the anti-IL-20 monoclonal antibody (mAb) 7E for DED treatment. METHODS: Clinical tear samples from patients with DED and non-DED controls were collected and their IL-20 protein levels were determined. We established three DED animal models to explore the role of IL-20 and the efficacy of IL-20 antibody in DED. Benzalkonium chloride (BAC)-induced over-evaporative DED, extra-orbital lacrimal gland excision (LGE)-induced aqueous tear-deficient DED, and desiccating stress (DS)-induced combined over-evaporative and aqueous tear-deficient DED animal models were established to investigate the role of IL-20. The anti-IL-20 antibody 7E was established to neutralize IL-20 activity. The effects of IL-20 or 7E on human corneal epithelial cells and macrophages under hyperosmotic stress were analyzed. 7E was topically applied to eyes to evaluate the therapeutic effects in the DED animal models. RESULTS: IL-20 was significantly upregulated in the tears of patients with DED and in the tears and corneas of DED animal models. Under hyperosmotic stress, IL-20 expression was induced via NFAT5 activation in corneal epithelial cells. 7E suppressed hyperosmotic stress-induced activation of macrophages. IL-20 induced cell death in corneal epithelial cells and 7E protected cells from hyperosmotic stress-induced cell death. Blocking IL-20 signaling with 7E protected mice from BAC-induced, LGE-induced, and DS-induced DED by reducing DED symptoms and inhibiting inflammatory responses, macrophage infiltration, apoptosis, and Th17 populations in the conjunctiva and draining lymph nodes. CONCLUSIONS: Our results demonstrated the functions of IL-20 in DED and presented a potential therapeutic option for this condition.


Assuntos
Síndromes do Olho Seco , Interleucinas , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Síndromes do Olho Seco/induzido quimicamente , Síndromes do Olho Seco/diagnóstico , Síndromes do Olho Seco/tratamento farmacológico , Humanos , Interleucinas/metabolismo , Camundongos , Lágrimas/metabolismo
7.
Cell Rep ; 39(1): 110643, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385754

RESUMO

In this study, we establish a population-based human induced pluripotent stem cell (hiPSC) drug screening platform for toxicity assessment. After recruiting 1,000 healthy donors and screening for high-frequency human leukocyte antigen (HLA) haplotypes, we identify 13 HLA-homozygous "super donors" to represent the population. These "super donors" are also expected to represent at least 477,611,135 of the global population. By differentiating these representative hiPSCs into cardiomyocytes and neurons we show their utility in a high-throughput toxicity screen. To validate hit compounds, we demonstrate dose-dependent toxicity of the hit compounds and assess functional modulation. We also show reproducible in vivo drug toxicity results using mouse models with select hit compounds. This study shows the feasibility of using a population-based hiPSC drug screening platform to assess cytotoxicity, which can be used as an innovative tool to study inter-population differences in drug toxicity and adverse drug reactions in drug discovery applications.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células-Tronco Pluripotentes Induzidas , Animais , Cardiotoxicidade , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos , Miócitos Cardíacos , Neurônios
8.
Front Cell Dev Biol ; 10: 825791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392174

RESUMO

The mediation of the extracellular matrix is one of the major environmental cues to direct cell migration, such as stiffness-dependent durotaxis and adhesiveness-dependent haptotaxis. In this study, we explore another possible contact guidance: roughness dependent topotaxis. Different from previously reported studies on topotaxis that use standard photolithography to create micron or submicron structures that have identical height and different spatial densities, we develop a new method to programmatically fabricate substrates with different patterns of surface roughness using two-photon polymerization. Surface roughness ranging from 0.29 to 1.11 µm can be created by controlling the voxel distance between adjacently cured ellipsoid voxels. Patterned Ormocomp® masters are transferred to polypropylene films using the nanoimprinting method for cell migration study. Our experimental results suggest that MG63 cells can sense the spatial distribution of their underlying extracellar roughness and modulate their migration velocity and direction. Three characteristic behaviors were identified. First, cells have a higher migration velocity on substrates with higher roughness. Second, cells preferred to migrate from regions of higher roughness to lower roughness, and their migration velocity also decreased with descending roughness. Third, the migration velocity remained unchanged on the lower roughness range on a graded substrate with a steeper roughness. The last cell migration characteristic suggests the steepness of the roughness gradient can be another environmental cue in addition to surface roughness. Finally, the combination of two-photon polymerization and nanoimprint methods could become a new fabrication methodology to create better 3D intricate structures for exploring topotactic cell migrations.

9.
IUBMB Life ; 74(2): 143-156, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668305

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown etiology that can affect nearly every organ system in the body. Besides genetic and environmental factors, unbalanced pro-inflammatory and anti-inflammatory cytokines contribute to immune dysregulation, trigger an inflammatory response, and induce tissue and organ damage. Inflammatory responses in SLE can be promoted and/or maintained by the availability of cytokines that are overproduced systemically and/or in local tissues. Several key cytokines have been considered potential targets for the reduction of chronic inflammation in SLE. Recent studies indicated that dysregulated production of several cytokines, including those of the IL-1 family and IL-10 family, orchestrate immune activation and self-tolerance, play critical roles in the pathogenesis of SLE. Among IL-1 family cytokines, IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38 had been the most thoroughly investigated in SLE. Additionally, IL-10 family cytokines, IL-10, IL-20, IL-22, IL-26, IL-28, and IL-29 are dysregulated in SLE. Therefore, a better understanding of the initiation and progression of SLE may provide suitable novel targets for therapeutic intervention. In this review, we discuss the involvement of inflammation in the pathogenesis of SLE, with a focus on IL-1 family and IL-10 family cytokines, and highlight pathophysiological approaches and therapeutic potential for treating SLE.


Assuntos
Citocinas , Interleucina-10/sangue , Lúpus Eritematoso Sistêmico , Humanos , Inflamação , Interleucina-1/genética , Interleucina-1/uso terapêutico , Interleucina-10/genética , Interleucinas/genética , Lúpus Eritematoso Sistêmico/genética
10.
Immunology ; 164(4): 817-833, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34403503

RESUMO

IL-20 is a proinflammatory cytokine of the IL-10 family and involved in several diseases. However, the regulatory role of IL-20 in obesity is not well understood. We explored the function of IL-20 in the pathogenesis of obesity-induced insulin resistance by ELISA, Western blotting and flow cytometry. The therapeutic potential of IL-20 monoclonal antibody 7E for ameliorating diet-induced obesity was analysed in murine models. Higher serum IL-20 levels were detected in obese patients. It was upregulated in leptin-deficient (ob/ob), leptin-resistant (db/db) and high-fat diet (HFD)-induced murine obesity models. In vitro, IL-20 regulated the adipocyte differentiation and the polarization of bone marrow-derived macrophages into proinflammatory M1 type. It also caused inflammation and macrophage retention in adipose tissues by upregulating TNF-α, monocyte chemotactic protein 1 (MCP-1), netrin 1 and unc5b (netrin receptor) expression in macrophages and netrin 1, leptin and MCP-1 in adipocytes. IL-20 promoted insulin resistance by inhibiting glucose uptake in mature adipocytes through the SOCS-3 pathway. In HFD-induced obesity in mice, 7E treatment reduced body weight and improved glucose tolerance and insulin sensitivity; it also reduced local inflammation and the number of M1-like macrophages in adipose tissues. We have identified a critical role of IL-20 in obesity-induced inflammation and insulin resistance, and we conclude that IL-20 may be a novel target for treating obesity and insulin resistance in patients with metabolic disorders.


Assuntos
Adipogenia , Suscetibilidade a Doenças , Interleucinas/metabolismo , Macrófagos/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores , Quimiotaxia de Leucócito , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Glucose/metabolismo , Humanos , Insulina/metabolismo , Interleucinas/genética , Macrófagos/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Obesidade/patologia , Transdução de Sinais
11.
EBioMedicine ; 64: 103213, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33508745

RESUMO

BACKGROUND: Interleukin-24 (IL-24) binds to two kinds of receptor complexes, namely IL-20R1/IL-20R2 and IL-20R2/IL-22R1, which are also bound by IL-20. IL-20 plays a detrimental role in liver fibrosis. Due to the sharing of receptor complexes, we aimed to determine whether IL-24 also participates in liver fibrosis. METHODS: Clinical biopsy specimens from various stages of liver fibrosis were used to analyze IL-24 expression. IL-24 protein was administered to mice with thioacetamide (TAA)-induced liver injury. The direct effects of IL-24 on mouse primary hepatocytes or hepatic stellate cells (HSCs) were analyzed. Wild-type, IL-20R1-, and IL20R2-deficient mice were used to establish a model of acute TAA-induced liver injury. FINDINGS: Among patients with more severe liver fibrosis, there was a reduced IL-24/IL-20 ratio. Administration of IL-24 protein protected mice from TAA-induced liver injury and reduction of liver inflammation by antioxidant effects. IL-24 protected hepatocytes from TAA-induced apoptosis and prevented liver fibrosis through the inhibition of the HSCs activation. The protective role of IL-24 acted on liver cells were mainly IL-20R1-independent. IL-20R2-deficient mice exhibited more severe liver injury upon TAA treatment, thus confirming the protective role of IL-24. INTERPRETATION: IL-24 plays a key protective role in the progression of liver injury and has therapeutic potential for treating liver injuries. FUNDING: This work was supported by the Ministry of Science and Technology of Taiwan (MOST 106-2320-B-006-024) and Taiwan Liver Disease Prevention & Treatment Research Foundation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Interleucinas/metabolismo , Cirrose Hepática/metabolismo , Substâncias Protetoras/metabolismo , Animais , Biomarcadores , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Imuno-Histoquímica , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Camundongos , Índice de Gravidade de Doença
12.
ACS Omega ; 5(45): 29427-29438, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33225174

RESUMO

In this paper, an elastic poly(vinylidenefluoride-co-trifluoroethylene) piezoelectric yarn for the application of a muscle patch sensor is presented. The electrospinning method is used to fabricate the piezoelectric yarn, and different parameters were used to control the orientation and structure of piezoelectric fibers. We further develop a post-alignment process to reorganize the orientation of fibers and to reshape fiber microstructures. Two unique microstructures of piezoelectric fibers that have an excellent elastic performance were identified. This piezoelectric yarn is composed of skewed and crimped fibers that align along the elongation direction, and it can be cyclically stretched up to 65% strain with good linearity, durability, and repeatability. Its mechanical behavior is superior to randomly distributed and fully straightened piezoelectric fibers, and it is suitable for long-term use of larger strain sensing. Our study demonstrated that this piezoelectric yarn can be stretched for more than 12 h under a repeated 1 Hz cyclic deformation. Using this elastic piezoelectric yarn, a muscle patch sensor that can be attached to the skin over human muscles for real-time monitoring is developed. The concentric, eccentric, and isometric contractions of biceps and triceps can be measured simultaneously to study their contraction behaviors. To further verify whether this patch sensor can be used under intense exercise conditions, the contraction behavior of a soleus muscle during stationary jumping and running is monitored to demonstrate sensor performance. Finally, this patch sensor is sewed onto a chest band, and it is verified that both breathing movement and heartbeat can be monitored.

13.
Nat Commun ; 11(1): 4611, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929072

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) and cancer-associated cachexia (CAC) are multifactorial and characterized by dysregulated inflammatory networks. Whether the proinflammatory cytokine IL-20 is involved in the complex networks of PDAC and CAC remains unclear. Here, we report that elevated IL-20 levels in tumor tissue correlate with poor overall survival in 72 patients with PDAC. In vivo, we establish a transgenic mouse model (KPC) and an orthotopic PDAC model and examine the therapeutic efficacy of an anti-IL-20 monoclonal antibody (7E). Targeting IL-20 not only prolongs survival and attenuates PD-L1 expression in both murine models but also inhibits tumor growth and mitigates M2-like polarization in the orthotopic PDAC model. Combination treatment with 7E and an anti-PD-1 antibody shows better efficacy in inhibiting tumor growth than either treatment alone in the orthotopic PDAC model. Finally, 7E mitigates cachexic symptoms in CAC models. Together, we conclude IL-20 is a critical mediator in PDAC progression.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/metabolismo , Interleucinas/antagonistas & inibidores , Modelos Biológicos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Caquexia , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interleucinas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/imunologia , Análise de Sobrevida , Resultado do Tratamento , Triglicerídeos/sangue , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Lab Chip ; 20(18): 3423-3434, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32785399

RESUMO

In this paper, a cardiac-and-piezoelectric hybrid system is developed for drug screening. The core structure is a polyvinylidene-fluoride piezoelectric membrane that serves as a flexible structure to interact with hiPSC cardiomyocytes and that measures the contraction profile of cardiomyocytes. This design enables the capability of electrically monitoring cardiomyocytes without the aid of an optical system. To guide cardiomyocytes aligning on this circular piezoelectric membrane, concentric rings of polydimethylsiloxane microgrooves are bonded to its surface. Experimental results demonstrate that seeded cardiomyocytes can align and elongate along the circular microgrooves to form a concentric pattern. To promote cardiomyocyte maturation, bipolar stimulation is conducted using a pin and a ring electrode made of a 304 stainless steel sheet. Furthermore, to maintain body temperature and minimize environmental noise, a 304 stainless steel box is constructed to enclose the cardiac-and-piezoelectric hybrid platform. It serves as an incubator and is electrically grounded for electromagnetic interference shielding. Using this system, continuous and repeated contractions of cardiomyocytes can be developed and monitored electrically. The system performance is verified using two commercial drugs: isoproterenol and metoprolol. It is experimentally demonstrated that this system can monitor the dosage effect of both drugs. Our results also show that the measured EC50 and IC50 values of contraction frequency and amplitude are in the same range. These findings suggest that both drugs can influence the beat frequency and contraction force simultaneously. In summary, taking advantage of the electro-mechanical coupling effect of the piezoelectric membrane, this system could be scaled up to perform automatic and parallel screenings for drug discoveries.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Avaliação Pré-Clínica de Medicamentos , Isoproterenol/farmacologia , Fenômenos Mecânicos
15.
J Neuroinflammation ; 17(1): 156, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408881

RESUMO

BACKGROUND: Spinal cord injury (SCI) causes devastating neurological consequences, which can result in partial or total paralysis. Irreversible neurological deficits and glial scar formation are characteristic of SCI. Inflammatory responses are a major component of secondary injury and play a central role in regulating the pathogenesis of SCI. IL-20 is a proinflammatory cytokine involved in renal fibrosis and liver cirrhosis through its role in upregulating TGF-ß1 production. However, the role of IL-20 in SCI remains unclear. We hypothesize that IL-20 is upregulated after SCI and is involved in regulating the neuroinflammatory response. METHODS: The expression of IL-20 and its receptors was examined in SCI rats. The regulatory roles of IL-20 in astrocytes and neuron cells were examined. The therapeutic effects of anti-IL-20 monoclonal antibody (mAb) 7E in SCI rats were evaluated. RESULTS: Immunofluorescence staining showed that IL-20 and its receptors were expressed in astrocytes, oligodendrocytes, and microglia in the spinal cord after SCI in rats. In vitro, IL-20 enhanced astrocyte reactivation and cell migration in human astrocyte (HA) cells by upregulating glial fibrillary acidic protein (GFAP), TGF-ß1, TNF-α, MCP-1, and IL-6 expression. IL-20 inhibited cell proliferation and nerve growth factor (NGF)-derived neurite outgrowth in PC-12 cells through Sema3A/NRP-1 upregulation. In vivo, treating SCI rats with anti-IL-20 mAb 7E remarkably inhibited the inflammatory responses. 7E treatment not only improved motor and sensory functions but also improved spinal cord tissue preservation and reduced glial scar formation in SCI rats. CONCLUSIONS: IL-20 might regulate astrocyte reactivation and axonal regeneration and result in the secondary injury in SCI. These findings demonstrated that IL-20 may be a promising target for SCI treatment.


Assuntos
Anticorpos Monoclonais/farmacologia , Interleucinas/antagonistas & inibidores , Neuroglia/patologia , Traumatismos da Medula Espinal/patologia , Animais , Cicatriz/patologia , Feminino , Atividade Motora/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos
16.
Opt Express ; 28(3): 3864-3878, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122048

RESUMO

We developed a modified photonic Doppler velocimetry (PDV) configuration which possesses the ability to record wide-range velocity information to evaluate composite material fracture behavior. With the laminate and tunnel design of a fragment generator, the controllable parameters such as fragment size and applied voltage can provide the flexibility for dynamic evaluation under different momentum conditions. We obtained velocity profiles using continuous wavelet transforms and by using our proposed velocity line tracing algorithm. Simulated heterodyne signals and surface morphology of fractures were examined to verify the heterodyne signals. We observed that the obtained tunnel-end velocity of the fragment generator was proportional to the applied voltage.

17.
Pain ; 161(6): 1237-1254, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32068666

RESUMO

The role of immune mediators, including proinflammatory cytokines in chemotherapy-induced peripheral neuropathy (CIPN), remains unclear. Here, we studied the contribution of interleukin-20 (IL-20) to the development of paclitaxel-induced peripheral neuropathy. Increased serum levels of IL-20 in cancer patients with chemotherapy were accompanied by increased CIPN risk. In mouse models, proinflammatory IL-20 levels in serum and dorsal root ganglia fluctuated with paclitaxel treatment. Blocking IL-20 with the neutralizing antibody or genetic deletion of its receptors prevented CIPN, alleviated peripheral nerve damage, and dampened inflammatory responses, including macrophage infiltration and cytokine release. Mechanistically, paclitaxel upregulated IL-20 through dysregulated Ca homeostasis, which augmented chemotherapy-induced neurotoxicity. Importantly, IL-20 suppression did not alter paclitaxel efficacy on cancer treatment both in vitro and in vivo. Together, targeting IL-20 ameliorates paclitaxel-induced peripheral neuropathy by suppressing neuroinflammation and restoring Ca homeostasis. Therefore, the anti-IL-20 monoclonal antibody is a promising therapeutic for the prevention and treatment of paclitaxel-induced neuropathy.


Assuntos
Paclitaxel , Doenças do Sistema Nervoso Periférico , Animais , Gânglios Espinais , Humanos , Hiperalgesia , Interleucinas , Camundongos , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico
18.
Int J Mol Sci ; 21(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028746

RESUMO

Acute kidney injury (AKI) causes over 1 million deaths worldwide every year. AKI is now recognized as a major risk factor in the development and progression of chronic kidney disease (CKD). Diabetes is the main cause of CKD as well. Renal fibrosis and inflammation are hallmarks in kidney diseases. Various cytokines contribute to the progression of renal diseases; thus, many drugs that specifically block cytokine function are designed for disease amelioration. Numerous studies showed IL-20 functions as a pro-inflammatory mediator to regulate cytokine expression in several inflammation-mediated diseases. In this review, we will outline the effects of pro-inflammatory cytokines in the pathogenesis of AKI and CKD. We also discuss the role of IL-20 in kidney diseases and provide a potential therapeutic approach of IL-20 blockade for treating renal diseases.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Interleucinas/metabolismo , Terapia de Alvo Molecular , Injúria Renal Aguda/metabolismo , Animais , Humanos , Transdução de Sinais
19.
J Clin Med ; 9(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947928

RESUMO

Intervertebral disc (IVD) is an avascular tissue under hypoxic condition after adulthood. Our previous data showed that inflammatory cytokines (interleukin (IL)-1ß), IL-20, and bone morphogenetic protein-2 (BMP-2) play important roles in the healing process after disc injury. In the current study, we investigated whether IL-1ß, IL-20, or BMP-2 modulate the expression of pro-inflammatory cytokines, chemotaxis factor, and angiogenesis factor on IVD cells under hypoxia. IVD cells were isolated from patients with intervertebral disc herniation (HIVD) at the levels of L4-5 and L5-S1. We found that the expression of IL-1ß, IL-20, BMP-2, hypoxia-inducible factor (HIF)-1α, IL-6, IL-8, angiogenetic factor (vascular endothelial growth factor (VEGF)), chemotactic factor (monocyte chemoattractant protein 1 (MCP-1)), and matrix metalloproteinase-3 (MMP-3) was upregulated in IVD cells under hypoxia conditions. In addition, IL-1ß upregulated the expression of pro-inflammatory cytokines (IL-6 and IL-8), VEGF, MCP-1, and disc degradation factor (MMP-3) in IVD cells under hypoxia conditions. IL-20 upregulated MCP-1 and VEGF expression. BMP-2 also upregulated the expression of MCP-1, VEGF, and IL-8 in IVD cells under hypoxia conditions. Treatment with antibody against IL-1ß decreased VEGF and MMP-3 expression, while treatment with IL-20 or BMP-2 antibodies decreased MCP-1, VEGF, and MMP-3 expression. Moreover, IL-1ß modulated both the expression of IL-20 and BMP-2, but IL-20 only modulated BMP-2 either under a hypoxic or normoxic condition. Therefore, we concluded that the inflammation, chemotaxis, matrix degradation, and angiogenesis after disc herniation are influenced by the hypoxic condition and controlled by IL-1ß, IL-20, and BMP-2.

20.
Cell Mol Immunol ; 17(4): 369-379, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31363171

RESUMO

Adipocyte-macrophage crosstalk plays a critical role to regulate adipose tissue microenvironment and cause chronic inflammation in the pathogenesis of obesity. Interleukin-29 (IL-29), a member of type 3 interferon family, plays a role in host defenses against microbes, however, little is known about its role in metabolic disorders. We explored the function of IL-29 in the pathogenesis of obesity-induced inflammation and insulin resistance. We found that serum IL-29 level was significantly higher in obese patients. IL-29 upregulated IL-1ß, IL-8, and monocyte chemoattractant protein-1 (MCP-1) expression and decreased glucose uptake and insulin sensitivity in human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes through reducing glucose transporter 4 (GLUT4) and AKT signals. In addition, IL-29 promoted monocyte/macrophage migration. Inhibition of IL-29 could reduce inflammatory cytokine production in macrophage-adipocyte coculture system, which mimic an obese microenvironment. In vivo, IL-29 reduced insulin sensitivity and increased the number of peritoneal macrophages in high-fat diet (HFD)-induced obese mice. IL-29 increased M1/M2 macrophage ratio and enhanced MCP-1 expression in adipose tissues of HFD mice. Therefore, we have identified a critical role of IL-29 in obesity-induced inflammation and insulin resistance, and we conclude that IL-29 may be a novel candidate target for treating obesity and insulin resistance in patients with metabolic disorders.


Assuntos
Inflamação/etiologia , Resistência à Insulina , Interferons/metabolismo , Interleucinas/metabolismo , Obesidade/complicações , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Arritmias Cardíacas/patologia , Diferenciação Celular , Movimento Celular , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Gigantismo/patologia , Transportador de Glucose Tipo 4/metabolismo , Cardiopatias Congênitas/patologia , Inflamação/sangue , Deficiência Intelectual/patologia , Interferons/sangue , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Interleucinas/sangue , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/sangue , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...